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Abstract

The effect of spring Arctic Stratospheric Ozone (ASO) changes on spring precipitation in China is analyzed using observa-
tions, reanalysis data, and the Whole Atmosphere Community Climate Model version 4 (WACCM4). We find that Febru-
ary—March mean ASO changes have a significant impact on April-May mean precipitation over Loess Plateau and middle—
lower reaches of the Yangtze River—two important grain-producing regions with large populations. Changes in the polar
vortex link the ASO to precipitation in China. Stratospheric circulation anomalies caused by ASO changes can propagate
to the North Pacific. An increase in ASO leads to enhanced westerlies in the high and low latitudes of the North Pacific but
weakened westerly in the mid-latitudes of the North Pacific. The circulation anomalies over the North Pacific, forced by the
increase of ASO, can extend westwards to East Asia, leading to an abnormal anticyclone in the East Asian upper and middle
troposphere, and an abnormal cyclone in the lower troposphere. This enhances the warm and humid airstream from Western
Pacific to Chinese mainland and strengthens upwelling over Loess Plateau and middle—lower reaches of the Yangtze River.
These conditions enhance precipitation in central China during positive ASO anomaly events and reduce precipitation dur-
ing negative events. The WACCM4 simulations support the results from statistical analysis of observations and reanalysis
data. Our results suggest that ASO variation can serve as a predictor of spring precipitation variation over Loess Plateau and
middle—lower reaches of the Yangtze River.

This paper is a contribution to the special issue on East Asian
Climate under Global Warming: Understanding and Projection,
consisting of papers from the East Asian Climate (EAC)
community and the 13th EAC International Workshop in Beijing,
China on 24-25 March 2016, and coordinated by Jianping Li,
Huang-Hsiung Hsu, Wei-Chyung Wang, Kyung-Ja Ha, Tim Li,
and Akio Kitoh.

1 Introduction

Stratospheric ozone protects life on Earth by absorbing solar
radiation in the ultraviolet range of the spectrum (e.g., Kerr
and Mcelroy 1993; Lubin and Jensen 1995; Chipperfield
et al. 2015) and has an important impact on temperature
through atmospheric radiative heating (e.g., Haigh 1994;
Ramaswamy et al. 1996; Forster and Shine 1997; Tian et al.
2010). Radiative heating influences stratospheric circula-
tion and can further influence tropospheric weather and
climate (e.g., Baldwin and Dunkerton 2001; Graf and Wal-
ter 2005; Cagnazzo and Manzini 2009; Ineson and Scaife
2009; Thompson et al. 2011; Reichler et al. 2012; Xie et al.
2012; Karpechko et al. 2014; Kidston et al. 2015; Zhang
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et al. 2016; Li et al. 2016). Thus, stratospheric ozone plays
an important role in the climate system.

In recent years, the impact of south polar stratospheric
ozone on climate change has received widespread atten-
tion (e.g., Son et al. 2008; Feldstein 2011; Kang et al. 2011;
Thompson et al. 2011; Gerber and Son 2014; Waugh et al.
2015) due to significant ozone depletion in the south polar
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stratosphere (Farman et al. 1985; Pawson and Naujokat
1999; Randel and Wu 1999, 2007; Solomon 1999; Labitzke
and Naujokat 2000). At the end of the twentieth century,
Antarctic stratospheric ozone losses exceeded 40% of the
total ozone (Randel and Wu 2007). The decreased Antarctic
ozone results in a temperature decrease through the strong
radiation cooling effect, which enhances the meridional gra-
dient of temperature and westerly winds. This process even-
tually leads to a stronger south polar vortex, corresponding
to a positive trend in the Southern Annular Mode, which
has a significant influence on the Southern Hemispheric cli-
mate (Thompson and Solomon 2002; Gillett and Thompson
2003; Thompson et al. 2011). The signal of enhanced winds
related to the Southern Annular Mode can extend from the
stratosphere to the surface (Son et al. 2010; Thompson et al.
2011), causing evident climate warming on the eastern Ant-
arctic Peninsula and cooling in the Antarctic interior over the
past few decades (Turner et al. 2005; Marshall et al. 2006).
Previous studies demonstrated that stratospheric cooling
caused by the Antarctic ozone hole results in a poleward
shift of the extratropical westerly jet and extension of the
Hadley cell in the Southern Hemisphere during austral
summer (Son et al. 2010; Min and Son 2013). Furthermore,
simulations and observations indicated that the displace-
ment of the westerly jet was also associated with a pole-
ward shift of the subtropical dry zone, with reduced rainfall
in mid-latitudes and increased rainfall in the high latitudes
of the Southern Hemisphere (Son et al. 2009; Polvani et al.
2011). In addition, it was shown that the variations in storm
tracks and ocean circulation in the Southern Hemisphere
were clearly affected by the Antarctic ozone hole (Yin 2005;
Russell et al. 2006; Bitz and Polvani 2012).

At the end of the twentieth century, Arctic ozone deple-
tion was not as obvious as its Antarctic counterpart because
the Arctic polar cap is relatively warm in winter and spring
(Montzka et al. 2011). Previously, it was considered that the
reaction of the Northern Hemisphere surface climate to Arctic
ozone losses was less evident (Thompson and Solomon 2005).
Gradually, the connection between Arctic ozone loss and trop-
ospheric climate change over the Northern Hemisphere has
been revealed in observations and simulations. Some studies
noted a significant surface air temperature (SAT) warming
trend in the mid-to-high latitudes of the Eurasian continent
since the late 1970s (Folland et al. 1990; Hurrell 1996; Jones
et al. 1999). Though inevitably connected to the increase in
atmospheric greenhouse gas concentrations, the warming trend
was also found to be strongly connected with enhanced west-
erly winds caused by Arctic stratospheric ozone depletion (Hu
and Tung 2003; Hu et al. 2005). Ivy et al. (2017) reported that
a large fraction of the variability in the March—April surface
temperature in certain regions of the Northern Hemisphere
is associated with variation in March Arctic ozone. Recently,
numerous modeling studies have analyzed the possible linkage
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between Arctic stratospheric ozone and tropospheric climate.
Cheung et al. (2014) used the low Arctic stratospheric ozone
anomalies in 2011 reported by the Earth Observing Sys-
tem (EOS) Microwave Limb Sounder (MLS) to predict the
tropospheric climate associated with ASO changes. Using
ECHAMS simulations, Karpechko et al. (2014) investigated
the surface climate with specified ozone anomalies and sea
surface temperatures. Based on numerical experiments, Smith
and Polvani (2014) and Calvo et al. (2015) found that the sig-
nal of spring ASO changes can propagate to the ground, result-
ing in changes to the climate of the mid-to-high latitudes of
the Northern Hemisphere; this includes changes to sea level
pressure (SLP) and the tropospheric jet. Xie et al. (2016) dem-
onstrated that the impacts of ASO variation on the surface
climate of the Northern Hemisphere are not limited to the
mid-to-high latitudes but could extend to the tropics via the
combination of the high-latitude stratosphere-to-troposphere
pathway and extratropical-to-tropical climate teleconnection.
They found that ASO variation lead El Nifio—Southern Oscil-
lation (ENSO) events by around 20 months.

Smith and Polvani (2014) and Calvo et al. (2015) also
investigated the relationship between spring ASO changes
and precipitation in the Northern Hemisphere. However, these
studies mainly focused on precipitation in Europe and North
America. The effect of spring ASO changes on precipitation in
Asia has received less attention. China—Asia’s most populous
country—is sensitive to spring precipitation changes because
precipitation is an important factor affecting agricultural pro-
duction. Numerous studies have investigated the factors that
influence spring precipitation in China (e.g., Zhang et al. 1999;
Cai et al. 2002; Chen et al. 2003, 2009; Yang and Lau 2004;
Chen and Qian 2005; Liu et al. 2005; Feng and Li 2011; Zhu
etal. 2011; Xiong et al. 2012a, b; Xu et al. 2013; Li et al. 2015,
2016a; Yu et al. 2015). It is uncertain whether the ASO also
has a significant impact on precipitation over China.

In this study, we report a strong link between ASO and
spring precipitation in China and focus on analyzing the
relationship between ASO variations and spring precipita-
tion anomalies and the associated mechanisms. The remain-
der of the paper is organized as follows. Section 2 describes
the data and simulations used in this study. In Sect. 3, we
show results for the variation in spring precipitation over
China associated with ASO anomalies and explore the rel-
evant mechanisms. The results of the model simulations are
discussed in Sect. 4. Finally, we draw conclusion and sum-
marize the results in Sect. 5.

2 Data and simulations

The ASO index is defined as the Arctic stratospheric ozone
averaged for the latitude of 60°-90°N at an altitude of
100-50 hPa after removing the seasonal cycle and trend.
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Monthly mean ozone is taken from the Stratospheric Water
and OzOne Satellite Homogenized (SWOOSH) dataset
which is a merged record of stratospheric ozone and water
vapor measurements taken by a number of limb sounding
and solar occultation satellites over the previous 30 years,
spanning 1984-2013 (Davis et al. 2016). Moreover, its pri-
mary product is a monthly-mean zonal-mean gridded dataset
containing ozone and water vapor data from the SAGE-II/III,
UARS HALOE, UARS MLS, and Aura MLS instruments.
The horizontal resolution and vertical pressure range of the
ozone data are 2.5° zonal mean (latitude: 89°S—89°N) and
316—1 hPa (31 levels), respectively. For more information,
see http://www.esrl.noaa.gov/csd/groups/csd8/swoosh. The
ASO index based on SWOOSH ozone is in good agreement
with that (Fig. 1; r=0.94) given by the Global Ozone Chem-
istry and Related trace gas Data Records for the Stratosphere
(GOZCARDS, 1984-2013) project (Froidevaux et al. 2015).
The zonal mean satellite-based GOZCARDS (1984-2013)
is produced from high quality data from past missions (e.g.,
SAGE, HALOE data) as well as ongoing missions (ACE-
FTS and Aura MLS). Its meridional resolution is 10° with
25 pressure levels from the surface up to 0.1 hPa.
Precipitation datasets come from three sources: 160—sta-
tion monthly mean rainfall data provided by the National
Meteorological Information Center of the China Meteoro-
logical Administration (CMA) at a horizontal resolution
of 0.5° which is the newest released rainfall dataset avail-
able for the region and is built from observations recorded
at 2472 long-term stations (Shen et al. 2010); the Global
Precipitation Climatology Project (GPCP) monthly rainfall
which has merged rain gauge stations, satellites, sounding
observations to estimate monthly rainfall on a 2.5° global
grid; the Global Precipitation Climatology Centre (GPCC)
monthly precipitation data calculated from global station
data at a horizontal resolution of 1.0°. Other datasets includ-
ing monthly-mean wind fields and geopotential height used
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Fig.1 ASO represented by a time series of February—March mean
ozone from SWOOSH ozone (black line) and GOZCARDS ozone
(blue line) from 1984 to 2013. Data are averaged between 60°-90°N
at 100-50 hPa, and the seasonal cycle and linear trend are removed

in this study are obtained from the NCEP/Department of
Energy (DOE) Reanalysis 2 (NCEP-2) following to the
NCEP/NCAR Reanalysis Project (NCEP-1) (Kalnay et al.
1996; Kistler et al. 2001), regarding as an updated NCEP-1
and correcting the known errors.

Whole Atmosphere Community Climate Model version
4 (WACCM4), a part of the National Center for Atmos-
pheric Research (NCAR) Community Climate Model, is
used to simulate the precipitation response in China to the
Arctic stratospheric ozone anomalies. WACCM4 is part
of the Community Earth System Model (CESM) frame-
work developed by the National Center for Atmospheric
Research (Hurrell et al. 2013). In this study, we use ver-
sion CESM1.0.6. WACCM4 also encompasses the Com-
munity Atmospheric Model version 4 (CAM4), and as such
includes all of its physical parameterizations (Neale et al.
2013). This improved version of WACCM uses a coupled
system made up of four components, namely atmosphere,
ocean (Danabasoglu et al. 2012), land, and sea ice (Hol-
land et al. 2012). WACCM4 uses a finite-volume dynamical
core, with 66 vertical levels extending from the ground to
4.5%107°hPa (~ 145 km geometric altitude), and a vertical
resolution of 1.1-1.4 km in the tropical tropopause layer and
the lower stratosphere (located below a height of 30 km).
The simulations presented in this paper are performed at
a horizontal resolution of 1.9°x2.5°, and do not include
interactive chemistry (Garcia et al. 2007). More details
about WACCMA4 are available in Marsh et al. (2013). Fixed
greenhouse gas (GHG) values, averages of emissions sce-
nario A2 of the Intergovernmental Panel on Climate Change
(IPCC) (WMO 2003) over the period 1995-2005, are used
in the model’s radiation scheme. The prescribed ozone forc-
ing used in our experiments is a 12-month seasonal cycle
averaged over the period 1995-2005 from CMIPS5 ensemble
mean ozone output. The Quasi Biennial Oscillation (QBO)
phase signals with a 28-month fixed cycle are included in
WACCM4 as an external forcing for zonal wind.

Here, we designed three time-slice experiments (R1-R3)
to investigate the effects of spring Arctic stratospheric
ozone increase and decrease on the precipitation in China.
An overview of all experiments is given in Table 1. All the
experiments were all run for 33 years, with the first 3 years
excluded for the model spin-up and only the last 30 years are
used for our analysis.

3 Variation in precipitation in China
associated with spring ASO anomalies

Correlation coefficients between February—March mean
ASO index and April-May mean precipitation based on dif-
ferent datasets are shown in Fig. 2a—c. A common and inter-
esting phenomenon is that February—March ASO variations
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Table 1 CESM-WACCM4 experiments with various specified ozone forcing

a

Exp® Specified ozone forcing

Other forcing

R1 Time-slice run as the control experiment used case F_2000_

WACCM_SC. The specified ozone forcing is a 12-month cycle of

monthly ozone averaged from 1995 to 2005

R2 Same as R1, except that the February—March ozone in the region
30°-90°N at 300-30 hPa® is decreased by 15% compared with R1

R3 Same as R1, except that February—March ozone in the region

30°-90°N at 300-30 hPa is increased by 15% compared with R1

Fixed solar constant, fixed greenhouse gas (GHG) values (aver-
ages of emissions scenario A2 of the Intergovernmental Panel
on Climate Change (WMO, 2003) over the period 1995-2005),
volcanic aerosols (from the Stratospheric Processes and their
Role in Climate (SPARC) Chemistry—Climate Model Validation
(CCMVal) REF-B2 scenario recommendations), and QBO phase
signals with a 28-month zonal wind fixed cycle

Same as R1

Same as R1

Integration time for time-slice runs is 33 years

To avoid the effect of the boundary of ozone change on the Arctic stratospheric circulation simulation, the replaced region (30°~90°N, 300—
30 hPa) was larger than the region used to define the ASO index (60°-90°N, 100-50 hPa)

are significantly correlated with the April-May precipita-
tion anomalies over the Loess Plateau and the middle-lower
reaches of the Yangtze River. This result is in good agree-
ment with that for ozone from GOZCARDS (Fig. 2d—f).
Although there are some differences in the six panels, this
is likely due to the different resolutions of these precipitation
datasets. In the following, we use SWOOSH ozone data for
detail analysis.

To further analyze the relationship between Febru-
ary—March ASO and April-May precipitation over the Loess
Plateau and the middle-lower reaches of the Yangtze River,
we show time series of February—March ASO changes and
April-May precipitation anomalies averaged over the region

(@ SWOOSH_O3vs CMAP  (b)

SWOOSH vs GPCP  (€)

105°-120°E and 25°-45°N (Fig. 3a). The correlation coef-
ficient between the two time series reaches 0.57 and is signifi-
cant at the 95% confidence level. However, February—March
ASO changes are not significantly correlated with simulta-
neous (February—March) precipitation variations (Fig. 3b,
r=0.0). The ASO changes lead precipitation anomalies by
about 1-2 months, implying that positive (negative) spring
ASO anomalies are associated with more (less) spring precipi-
tation in the central region of China. Further analysis confirms
that the strongest relationship is between the February—March
ASO and April-May precipitation in China (not shown). This
may be because the strongest changes to ASO occur in Febru-
ary and March, caused by the breakdown of the Arctic polar

SWOOSH vs GPCC
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Fig.2 Correlation coefficients between the February—-March mean
ASO index and the April-May mean precipitation anomalies for
the period 1984-2013. ASO indexes are calculated using (a-b)
SWOOSH and (d-f) GOZCARDS data, and the precipitation data-
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sets are based on (a, d) CMA, (b, ) GPCP and (c, f) GPCC. Hatched
regions are statistically significant at the (a—c) 95% and (d-f) 90%
confidence level according to Student’s ¢ test. Precipitation anomalies
are calculated by removing the seasonal cycle and linear trend
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Fig.3 a Time series of February-March mean ASO index (black
line) and April-May mean precipitation (blue line) anomalies for
1984-2013. The ASO from SWOOSH and precipitation is averaged
over the region 25°-45°N and 105°-120°E from CMA. b Is the same
as a, but for both February—March mean ASO index (black line) and
precipitation (blue line). The correlation coefficient between the two
time series is given in the upper right corner of each panel

vortex. The 1-2 months delayed effect of ASO on precipita-
tion is because the stratospheric circulation signal caused by
changes to ASO needs 1-2 months to propagate to the North-
ern Hemispheric surface (Smith and Polvani 2014; Calvo et al.
2015; Xie et al. 2016; Ivy et al. 2017).

To further verify the connection between February—March
ASO variation and April-May precipitation in the central
region of China, a composite analysis is performed with
respect to the February—March ASO index from SWOOSH
ozone (Fig. 1). Positive and negative ASO anomaly events are
identified using + 1 standard deviation. The February—March
ASO index is positive in 1987, 1998, 1999, 2001, 2002, 2004
and 2010, while it is negative in 1993, 1995, 1996, 1997, 2000
and 2011 (Table 2). The ASO increases (decreases) by an
average of 10.8% (11.2%) during the positive (negative) ASO
anomaly events. Figure 4 shows the differences in April-May
mean precipitation anomalies over China between positive
and negative February—March ASO anomaly events. The pat-
tern of composite precipitation anomalies is similar to that
for the correlation coefficients between the February—March

ASO index and April-May precipitation anomalies over China
(Fig. 2); i.e., positive rainfall anomalies in the Loess Plateau
and the middle—lower reaches of the Yangtze River in the posi-
tive ASO anomalies events. Note, however, that the significant
regions in Figs. 2 and 4 are not exactly the same. In Fig. 2,
the rainfall anomaly region is over the Loess Plateau, while
Fig. 4 highlights the lower reaches of the Yangtze River. The
difference may result from the fact that the composite Fig. 4
is influenced by the rainfall climatology, whereas the correla-
tion coefficient is independent of the magnitude of the rainfall.

The above analysis reveals a strong statistical relationship
between February—March ASO variation and April-May
precipitation in the central region of China. According to
the 1-2 month lead-lag correlation, this relationship sug-
gests that ASO changes influence precipitation variability.
A question arises here: what processes are responsible for
this relationship? In general, surface precipitation change
is closely linked with circulation variations; therefore, we
first examine the relationships between ASO, wind and geo-
potential height.

Previously, Xie et al. (2017) demonstrated that the ASO
has a lagged impact on mid-high latitude circulation, and
showed that stratospheric circulation anomalies caused by
ASO changes can rapidly extend to the lower troposphere
in the high latitudes of the Northern Hemisphere. The

pos-neg
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Fig.4 Difference in April-May mean precipitation (mm/day) over
China between positive and negative ASO anomaly events from 1984
to 2013. Hatching indicates areas that are statistically significant at
the 95% confidence level. The selected ASO anomalous events are
given in Table 2. ASO data are from SWOOSH and precipitation data
from CMA

Table 2 Positive (left column) and negative (right column) ASO anomaly events based on SWOOSH ozone for the period of 1984-2013 ana-

lyzed in this paper

ASO index > 1 STD

ASO index < —1 STD

1987, 1998, 1999, 2001, 2002, 2004, 2010

1993, 1995, 1996, 1997, 2000, 2011
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circulation anomalies in the high latitudes of the lower
troposphere take about a month to propagate to the North
Pacific mid-latitudes. Thus, we only show the lagged
response of circulation variations to the ASO changes.
Figure 5a, c, e depict the correlation coefficients between
the February—March ASO index and the April-May zonal
wind (U) at 200 hPa, 500 hPa and 850 hPa. Previous
studies found that the East Asian jet is affected by ASO
changes (Smith and Polvani 2014; Calvo et al. 2015; Xie
et al. 2016; Ivy et al. 2017). It is evident that the intensity
of East Asian jet is related to ASO changes, as the areas of
highest significant correlation are over the North Pacific.
At 200 hPa (Fig. 5a), the spatial pattern of the correlation
coefficients over the North Pacific exhibits a tripolar mode
with a zonal distribution; i.e., there is positive correla-
tion in the higher and lower latitudes of the North Pacific,
but negative correlation in the mid-latitudes of the North
Pacific. This feature is also evident at 500 hPa (Fig. 5b)
and even at 850 hPa (Fig. 5¢). Note that the significant
correlation coefficients at 200 and 500 hPa can extend
westward to East Asia, implying that the effect of ASO
anomalies can indeed reach East Asia. The differences
in April-May zonal wind anomalies at 200 hPa, 500 hPa
and 850 hPa between the positive and negative events of
February—March ASO anomalies are shown in Fig. 5b, d,
f. The pattern of composite zonal wind anomalies is simi-
lar to the pattern of the correlation coefficients between

(a 200 hPa

90N
60N
30N 06
05
0 0.4
03
90N 0.2
60N o
0
30N -0.1
0.2
0 0.3
90N i
-0.5
60N -0.6
30N
0

0 60E 120E 180 120W 60W

Fig.5 Correlation coefficients between February—March mean ASO
index and April-May mean zonal wind (m/s) for 1984-2013 at a
200 hPa, ¢ 500 hPa and e 850 hPa. The differences of the April-May
mean zonal wind anomalies between the positive and negative events
of February-March ASO anomalies are presented at b 200 hPa, d
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February—March ASO index and April-May zonal wind
anomalies.

During positive ASO anomaly events, a positive zonal
wind anomaly appears in the middle and upper troposphere
over northern China, while a negative anomaly is evident
over southern China (Fig. 5). Hence, it is possible that an
abnormal anticyclone emerges in the middle and upper trop-
osphere over the central region of China associated with
positive ASO anomaly events. The correlation coefficients
between the February—March ASO index and April-May
geopotential height variations, and the differences in the
April-May geopotential height anomalies between the posi-
tive and negative events of the February—March ASO anom-
aly at 200 hPa, 500 hPa and 850 hPa are shown in Fig. 6.
The positive geopotential height changes correspond to the
zonal wind changes (Fig. 5) during positive ASO anomaly
events, and the geopotential height changes over the North
Pacific can extend westward to China at 200 and 500 hPa.
However, there are negative geopotential height anomalies
in the central region of China at 850 hPa during positive
ASO anomaly events. This implies a baroclinic structure
with an anticyclone in the upper and middle troposphere and
a cyclone in the lower troposphere over the central region of
China during positive ASO anomaly events.

To prove the above conjecture, we further investigate the
circulation features over China during positive ASO anom-
aly events. We show the vector difference of April-May

90N
60N
30N

90N
60N
30N

90N
60N %
30N -

0 60E 120E 180 120W 60W

500 hPa and f 850 hPa. Hatching indicates areas that are statistically
significant at the 95% confidence level. The composite zonal wind
anomalies are calculated by removing the annual cycle and the linear

trend from the original data and based on yearly values for the Febru-
ary—March ASO index (Table 2). Zonal wind data are from NCEP2
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Fig.6 As in Fig. 5, but for geopotential height (m) from NCEP2

horizontal wind in the region 70°-140°E and 10°-60°N
between positive and negative events of the February—March
ASO anomaly (Fig. 7). An anticyclone is found in the upper
and middle troposphere (Fig. 7a, b), while there is a cyclone
in the lower troposphere over the central region of China
during positive ASO anomaly events (Fig. 7c). The anti-
cyclone in the upper troposphere and cyclone in the lower
troposphere would result in upwelling at this area.

Figure 8a shows a longitude—height cross-section of dif-
ferences in the April-May vertical velocity (averaged over
25°-45°N) between positive and negative events of the
February—March ASO anomaly. There is a large negative
vertical velocity anomaly (enhanced upwelling) in the tropo-
sphere at 105°-120°E during positive ASO anomaly events.
A longitude—latitude cross-section of differences in the
April-May vertical velocity (averaged over 1000-500 hPa)
over the region 70°-140°E and 10°-60°N between positive
and negative events of the February—March ASO anomaly
is shown in Fig. 8b. The abnormal rising airflow appears
over the Loess Plateau and the middle—lower reaches of the
Yangtze River. It is evident that tropospheric upwelling will
be enhanced over the central region of China if the ASO is
anomalously high in spring.

According to Figs. 7 and 8, circulation anomalies over
the central region of China, which are related to spring ASO
anomalies, create conditions that favor spring precipitation
in this area: first, changes to the west side of the East Asian
jet (Figs. 5, 6) during positive ASO anomaly events enhance
the warm and humid airstream from the Pacific Ocean to the
Chinese Mainland (Fig. 7); second, these changes lead to an

(b) 200 hPa, pos-neg

90N
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30N

0

90N
60N
30N

90N
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30N

anticyclone in the upper troposphere and a cyclone in the
lower troposphere over the central region of China, which
results in anomalous upwelling over this region (Fig. 8). The
increase of water vapor concentration in the atmosphere with
enhanced upwelling over the Loess Plateau and the mid-
dle-lower reaches of the Yangtze River results in more pre-
cipitation over this area during positive ASO anomaly events
(Fig. 4), and vice versa.

4 Simulated variations in precipitation
in China forced by spring ASO anomalies

In Sect. 3, we investigated precipitation variability in China
associated with ASO anomalies in spring, and the driving
mechanism, using statistical analysis of observations and
reanalysis data. In this section, we use WACCM4 simu-
lations to further verify our results. First, we examine the
simulation capability of WACCM4 for predicting precipita-
tion in China. Figure 9a shows a longitude-latitude cross-
section of the April-May mean total precipitation field over
the region 70°-140°E and 10°-60°N around the year 2000
for experiment R1. (For details of the experiments please
refer to Table 1). The precipitation climatology in April and
May simulated by WACCM4 is similar to the observations.
Both model and observations show more precipitation south
of latitude 20°N, over southern China and the East Sea, but
the simulated precipitation intensity is slightly larger than
that observed.
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Fig.7 The vector difference in April-May horizontal wind in the
region 70°-140°E and 10°-60°N between positive and negative
events of the February—March ASO anomaly at a 200 hPa, b 500 hPa
and ¢ 850 hPa from 1984 to 2013. Colored regions are statistically
significant at the 90% (light yellow) and 95% (dark yellow) confi-
dence levels. The composite horizontal wind anomalies are calcu-
lated by removing the annual cycle and linear trend from the original
data and based on yearly values of the February—March ASO index
(Table 2). Horizontal wind data are from NCEP2

Figure 10 shows the difference in precipitation between
the R3 and R2 experiments. The ASO increase forces a
statistically significant (95% confidence level) increase in
April-May precipitation over the Loess Plateau and the
middle—lower reaches of the Yangtze River (Fig. 10a). The
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pattern of April-May precipitation anomalies in Fig. 10a
is similar to both the distribution of significant correlation
coefficients between the February—March ASO index and
April-May precipitation anomalies (Fig. 2) and the differ-
ence in April-May mean precipitation anomaly over China
between positive and negative events of the February—March
ASO (Fig. 4) where ASO and precipitation are all from
observations. However, the simulated intensity of precipi-
tation anomalies is smaller than that observed over northern
China, but is larger over the southern and eastern Tibetan
Plateau (Fig. 10a). In addition, there are three obvious nega-
tive precipitation centers in Fig. 10a, but they are not sig-
nificant and not seen in the observations. This may be due to
that the model convection parameterization scheme over and
around the Tibetan Plateau is not perfect. The difference in
February—March precipitation between R3 and R2 is shown
in Fig. 10b. These differences are small and not significant.
This suggests that the February—March ASO has no signifi-
cant impact on simultaneous (February—March) precipita-
tion in China but can significantly affect April-May precipi-
tation (Fig. 10a). This result from the simulations supports
results from our statistical analysis of observations (Fig. 3).

We analyze the mechanism through which the ASO
anomaly affects precipitation in the simulations by explor-
ing the circulation and geopotential height anomalies forced
by February—March ASO anomalies. Figure 11 shows the
forced April-May circulation and geopotential height anom-
alies at 200 hPa, 500 hPa and 850 hPa. The spatial distribu-
tion of these anomalies from the WACCM4 simulations is
consistent with results from our earlier statistical analysis
(Figs. 5, 6). The East Asian jet is significantly influenced by
ASO anomaly forcing. The circulation anomalies over the
North Pacific exhibit a tripolar mode with a zonal distribu-
tion; i.e., with enhanced westerlies in the higher and lower
latitudes of the North Pacific but weakened westerly in the
mid-latitudes (Fig. 11a, c, e). The geopotential height anom-
alies correspond well to the circulation changes (Fig. 11b, d,
f). In the simulations, the circulation and geopotential height
anomalies forced by ASO changes can extend westward to
East Asia.

Figure 12 shows the vector difference in April-May hori-
zontal wind between R3 and R2, in the region 70°-~140°E
and 10°-60°N. An abnormal anticyclone in the East Asian
upper and middle troposphere (Fig. 12a, b) and an abnormal
cyclone in the lower troposphere (Fig. 12¢) are forced by
an increase in ASO. As stated in Sect. 3, this circulation
pattern will enhance the warm and humid airflow from the
Pacific Ocean to China, increase the water vapor content
over the central region of China, and strengthen upwelling
over the Loess Plateau and the middle—lower reaches of the
Yangtze River. In summary, the simulation results support
the results from our statistical analysis of observations and
reanalysis data.
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Our results are similar to those of Smith and Polvani
(2014), showing that the circulation variations over Alaska
and Eastern Europe are significantly correlated with ASO
changes. However, Smith and Polvani (2014) did not find
significant circulation changes over the North Pacific caused
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section, with the vertical velocity averaged over 1000-500 hPa. The
composite vertical velocity anomalies are calculated by removing
the annual cycle and linear trend from the original data and based on
yearly values of the February—March ASO index (Table 2)
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1 test

@ Springer



4038 F. Xie et al.
(a) b
90N WACCM200hPa o (B) WACCM.200 hPa
60N 60N
30N § 30N L 2
% 4 105
0 0 4 — N : ; i
0 30E 60E 90E 120E 150E 75
d 6
90N SON ) WACCM.500 hPa f &
. u—— -
60N 60N { 15
H o
30N 30N 15
-3
0 0 " - - T . 45
0 30E 60E 90E 120E 150E 06 0 30E 60E 90E 120E 150E 6
90N WACCM.850 hPa ffo8 i M WACCM.850 hPa -?:

60N
30N

0 60E 120E 180 120W 60W

60N |
30N

-10.5

0 60E 120E 180 120W 60W

Fig. 11 The difference in April-May mean zonal wind (a, ¢ and e) and geopotential height (b, d and f) between R3 and R2 at 200 hPa (a, b),

500 hPa (¢, d), and 850 hPa (e, f)

by ASO changes. Calvo et al. (2015) pointed out that the
ASO changes can significantly affect the circulation anoma-
lies in the North Pacific, consistent with our results. It is pos-
sible that Smith and Polvani (2014) did not find the signal
over the North Pacific because their model is not state-of-
the-art for stratospheric simulation.

5 Summary and conclusions

Using observational and reanalysis datasets together with
WACCM4, we find an advanced impact (1-2 months) of
spring Arctic stratospheric ozone changes on spring precipi-
tation in China. When the February—March ASO is anoma-
lously high (low), April-May precipitation will increase
(decrease) in the Loess Plateau and the middle-lower
reaches of the Yangtze River, two regions important for
grain production in China. We have also revealed the under-
lying mechanisms behind this relationship.

To reveal the underlying mechanisms, horizontal wind,
geopotential height, and vertical velocity changes associated
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with ASO anomalies are also analyzed. The East Asian jet
is significantly influenced by ASO anomalies. The circu-
lation anomalies over the North Pacific exhibit a tripolar
mode with a zonal distribution; i.e., enhanced westerlies in
higher and lower latitudes of the North Pacific, but weekend
westerly in the mid-latitude North Pacific. The circulation
anomalies forced by an increase of ASO can extend west-
wards to East Asia, leading to an abnormal anticyclone in
the upper and middle troposphere and an abnormal cyclone
in the lower troposphere. This case enhances the warm and
humid airstream from the Pacific Ocean to the Chinese
Mainland and strengthens the upwelling over the Loess
Plateau and the middle-lower reaches of the Yangtze River.
These conditions result in more precipitation in the central
region of China during positive ASO events, and vice versa
for negative ASO events. Results from WACCM4 simula-
tions of the impact of February—March Arctic stratospheric
ozone on the April-May precipitation in the Loess Plateau
and the middle—lower reaches of the Yangtze River support
the results drawn from the statistical analysis of observations
and reanalysis data.
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